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NORMAL MODES AND NEAR-RESONANCE
RESPONSE OF BEAMS WITH NON-LINEAR EFFECTS
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Non-linear normal modes and the associated frequencies of a uniform beam with
simply-supported or clamped conditions at both ends have been derived. Some restricted
orthogonality conditions have been pointed out. The effects of the longitudinal inertia on
the non-linear transverse motion are shown to be extremely small. The efficacy of using
the non-linear normal modes towards computation of near-resonance response has been
clearly brought out.
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1. INTRODUCTION

The analysis of both free and forced vibrations of a non-linear, multi-degrees-of-freedom
system gets complicated due to modal coupling. A concept of non-linear normal modes,
following that of the linear ones, was first introduced by Rosenberg [1] using a geometric
method. The idea of the non-linear normal modes is based upon the observation that there
exist periodic solutions to the equations of free vibration in which all the co-ordinates cross
their equilibrium positions simultaneously and also attain their maximum values
simultaneously. However, the linear normal modes, unlike the non-linear modes, are
orthogonal to one another. Further, the non-linear mode shapes, as well as the associated
(natural) frequencies, are dependent on the amplitude of motion.

The concept of non-linear normal modes has been elaborated by several researchers like
Stupnicka [2], Rand [3], Shaw and Pierre [4], King and Vakakis [5], Nayfeh and Nayfeh
[6]. Different methods, namely, harmonic balance [2], invariant manifold theory [4], energy
method [5] and multiple time scale method [6] have been used for conservative systems
having multiple or infinite degrees of freedom. The efficacy of the simple harmonic balance
technique for obtaining the non-linear modes of a multi-degrees-of-freedom system has
been clearly brought out in reference [2]. Numerical computation of near-resonance
response of such systems, using the non-linear normal modes, is also amply demonstrated
in this reference. The non-linear equation of a beam has also been studied using Galerkin’s
technique with the spatial distribution represented by a combination of linear modes and
the observed (linear) modal coupling has also been verified experimentally [7].

In the present work, the non-linear normal modes of a uniform beam having weak
non-linearities and linear boundary conditions are obtained. Towards this end, instead of
using a numerical approach following harmonic balance [2], a combination of harmonic
balance and perturbation technique has been used. Thus the effects of non-linearities can
be very easily tracked to different orders of approximation. Finally, the non-linear normal
modes are obtained as a combination of certain linear normal modes. The contributions

0022–460X/98/060019+18 $25.00/0/sv971284 7 1998 Academic Press Limited



.   .20

of different linear modes are found to be amplitude dependent. The transverse vibration
of the beam is analysed by both including and neglecting longitudinal inertia.

Results are explicitly obtained for only two symmetric boundary conditions, namely,
simply-supported and clamped at both ends. The non-linear normal modes are then used
to obtain the steady state, near-resonance response for both symmetric and asymmetric
locations of a point harmonic load. Thus the contributions of symmetric and
antisymmetric modes are clearly seen. The negligible effect of the longitudinal inertia
towards both the non-linear normal modes and the near-resonance response is
demonstrated. It is clearly shown that the use of non-linear, rather than linear, modes
considerably reduces the computational effort. The numerical results show good agreement
with available experimental results.

2. THEORETICAL ANALYSIS

2.1.   

The equations of motion for planar vibration of a uniform beam, including the
non-linear terms are given by [8]

rA
12u*
1t2 −EA

12u*
1j2 =EA

1w*
1j

12w*
1j2 (1a)

rA
12w*
1t2 +EI

14w*
1j4 =EA

1

1j $1u*
1j

1w*
1j

+ 1
2 01w*

1j 1
3

% (1b)

where the symbols are listed in Appendix A.
By neglecting the longitudinal inertia and making the usual assumption [8] one derives

the following non-linear differential equation governing the transverse motion of the beam:

rA
12w*
1t2 +EI

14w*
1j4 =EA$1

2l g
l

0 01w*
1j 1

2

dj% 12w*
1j2 . (2)

Using the following non-dimensional parameters

w=
w*
lg2 , x=

j

l
, u=

u*
l

and t=
1
l 0Er1

1/2

gt

and introducing a small parameter o= g2/2 equations (1a), (1b) and (2) become,
respectively,
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14w
1x4 = o$g

1

0 01w
1x1

2
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In what follows, the non-linear normal modes with reference to equations (3a) and (3b)
are first discussed and then equation (4) is considered (i.e., neglecting the longitudinal
inertia).

2.2. -     

In this section, the beam is taken to be fixed at both ends so far as the longitudinal
motion is concerned. The linear normal modes of a beam can be obtained from equation
(3a) after substituting o=0. Let 8n (x) and vl

n, (n=1, 2, 3, . . . ) be the nth linear normal
mode and the corresponding linear natural frequency. To obtain the non-linear normal
modes of transverse vibration from equations (3a) and (3b), for o$ 0, w(x, t) is assumed
as

w(x, t)= acn cos vn t. (5)

Substituting equation (5) into equation (3a) one obtains

12u
1t2 −

1
2o

12u
1x2 = oa2 dcn

dx
d2cn

dx2 + oa2 dcn

dx
d2cn

dx2 cos 2vn t. (6)

The steady state solution to equation (6) is assumed in the form:

u(x, t)= u1 (x)+ u2 (x, t) (7)

where u1 (x) and u2 (x, t) are the solutions with only the first and the second term,
respectively, on the right hand side of equation (6), and

du1

dx
=−o2a20dcn

dx1
2

+ f (8)

with f as the constant of integration. Equation (8), on integration and after using the
boundary conditions that the longitudinal displacement is zero at both ends, i.e., at x=0
and x=1, yields

f= o2a2 g
1

0 0dcn

dx1
2

dx. (9)

Next, the time-dependent part of u, u2 (x, t) is easily obtained as

u2 (x, t)= oa2 s
a

i=1

Ci Gi (x)

0 1
2o

n2
i −4v2

n1
cos 2vn t (10)

where

Ci =
f1
0
dcn

dx
d2cn

dx2 Gi dx

f1
0 G2

i dx
(11)

and Gi’s and ni’s are the linear mode shapes and natural frequencies for the longitudinal
vibration, i.e.,

Gi (x)= sin ipx and ni = ip, i=1, 2, 3, . . . . (12)
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Now for small non-linearity, (o�1), the nth non-linear mode cn (x) and associated
frequency vn are assumed (close to the linear ones) as

v2
n =(vl

n)2 + ob(1)
n + o2b(2)

n +· · · , cn =8n + od(1)
n + o2d(2)

n +· · · . (13, 14)

Substituting equations (5), (7–12) into equation (3b) and by harmonic balance, one gets

−av2
ncn + a

d4cn

dx4 =
d
dx

G
G

G

K

k
o

4
a30dcn

dx1
3

+
o

2
a3 s

a

i=1

Ci 0dGi

dx10dcn

dx1
(n2

i −8ov2
n)

G
G

G

L

l

+ 1
2 oa3$g

1

0 0dcn

dx1
2

% d2cn

dx2 . (15)

Using expansions (13) and (14) in equations (15) and (11), one can equate the coefficients
of like powers of o in both sides to get

o0: −(vl
n)28n +

d48n

dx4 =0 (16a)

o1: −(vl
n)2d(1)

n +
d4d(1)

n

dx4 = b(1)
n 8n + a2 d

dx
[L]+ 1

2 a2$g
1

0 0d8n

dx1
2

dx% d28n

dx2 (16b)

where
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G
G

G

K

k
1
4 0d8n

dx1
3

+ 1
2 s

a

i=1
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i0dGi

dx10d8n

dx1
n2

i

G
G

G

L

l (17a)

Cl
i =

f1
0
d8n

dx
d28n

dx2 Gi dx

f1
0 G2

i dx
. (17b)

Equation (16a) is trivially satisfied. To solve equation (16b), we assume

d(1)
n = s

a

i=1

D(1)
i 8i . (18)

Substituting equation (18) into equation (16b) one can rewrite the right hand side of
the same as

b(1)
n 8n + a2 s

a

i=1 0l(1)
i +

a(1)
i

2 18i (19)
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where

l(1)
i =

0f1
0
dL

dx
8i dx1

(f1
0 82

i dx)
(20a)

a(1)
i =

0f1
0 0d8n

dx1
2

dx10f1
0
d28n

dx2 8i dx1
(f1

0 82
i dx)

. (20b)

Now substituting equations (18–20) into equation (16b) and equating the coefficients of
8i ’s from both sides of this equation one obtains

b(1)
n =−a20l(1)

n +
a(1)

n

2 1, d(1)
n = a2 s

i$ n

0l(1)
i +

a(1)
i

2 18i

[(vl
i)2 − (vl

n)2]
. (21a, b)

Hence, the non-linear normal modes and the associated frequencies are obtained as

cn =8n + oa2 s
i$ n

0l(1)
i +

a(1)
i

2 18i

[(vl
i)2 − (vl

n)2]
(22a)

v2
n =(vl

n)2 − oa20l(1)
n +

a(1)
n

2 1. (22b)

The amplitude dependence of the non-linear mode shape and frequency is clearly
exhibited by equations (22a) and (22b). The results for simply-supported and
clamped–clamped boundary conditions are explicitly obtained as given below.

2.2.1. Simply-supported beam
For the simply-supported non-linear beam, the boundary conditions are

w(0, t)=w(1, t)=0,
12w(0, t)

1x2 =
12w(1, t)

1x2 =0. (23)

In this case

8n (x)= sin (npx), (vl
n )2 = (np)4. (24a, b)

Substituting equations (24a, b) into equations (22a, b) one gets to a second order
approximation (details are given in Appendix B),

cn =sin npx+ 3
2 o2 a2(np)2

(34 −1)
sin 3npx

v2
n =(np)4[1+ 3

8 oa2]− 1
2 o2a2(np)6.
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It is seen that the coupling of the linear modes exists in the non-linear mode shape only
in the second order approximation.

2.2.2. Clamped–clamped beam
Now the boundary conditions are

w(0, t)=w(1, t)=0,
1w(0, t)

1x
=

1w(1, t)
1x

=0. (25)

The linear modes and the natural frequencies are given by

8n =$(sin mn x−sinh mn x)−
(sin mn −sinh mn )
(cos mn −cosh mn )

(cos mn x−cosh mn x)% (26a)

(vl
n )2 = m4

n (26b)

where mn’s are the roots of the transcendental equation cos mn cosh mn =1.
For such a beam, the first three non-linear modes and the corresponding frequencies

are obtained as

c1 =81 +0·006598oa283, v2
1 = (vl

1)2[1+0·2351oa2] (27a)

c2 =82, v2
2 = (vl

2)2[1+0·4169oa2] (27b)

c3 =83 −0·05062oa281, v2
3 = (vl

3)2[1+0·50225oa2]. (27c)

2.3. -     

To get the non-linear normal mode of a beam when the longitudinal inertia is neglected,
equation (5) can be substituted into equation (4). Following harmonic balance, one gets

−av2
ncn + a

d4cn

dx4 = 3
4 oa3$g

1

0 0dcn

dx1
2

dx% d2cn

dx2 . (28)

For small non-linearities, the non-linear mode cn and the associated frequency vn are
expanded as in equations (13) and (14), respectively. Then substituting these into equation
(28) and subsequently equating the coefficients of the like powers of o from both sides of
this equation one finds

o0: −(vl
n)28n +

d48n

dx4 =0 (29a)

o1: −(vl
n)2d(1)

n +
d4d(1)

n

dx4 = b(1)
n 8n + 3

4 a2$g
1

0 0d8n

dx1
2

dx% d28n

dx2 . (29b)

The solutions to the above equations are carried out by the method described in section
2.2. The final results are obtained as

cn =8n + 3
4 oa2 s

i$ n

a(1)
i 8i

[(vl
i)2 − (vl

n)2]
(30)

v2
n =(vl

n)2 − 3
4 oa2a(1)

n . (31)
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Now we recalculate the non-linear normal modes and the associated frequencies from
equations (30) and (31) for simply-supported and clamped–clamped end conditions to
demonstrate the effect of the longitudinal inertia.

2.3.1. Simply-supported end conditions
Substitution of equations (24a) and (24b), i.e., the linear normal mode shape and

frequency, into equations (30) and (31), yields

v2
n =(np)4[1+ 3

8 oa2], cn (x)=8n (x) (32, 33)

since a(1)
i =0 if i$ n and a(1)

n =−1
2 (np)4.

Equation (33) shows that for a simply-supported beam, the non-linear normal modes
are the same as the linear normal modes and hence also orthogonal to each other. The
above result is well established in the literature [6].

2.3.2. Clamped–clamped end conditions
Using the nth linear normal mode 8n and frequency vl

n as in section 2.2.2, and noting
that

g
1

0

d28n

dx2 8i dx=0 if i+ n=odd,

one obtains

cn =8n + 3
4 oa2 s

i+ n=even,i$ n

a(1)
i 8i

[(vl
i)2 − (vl

n)2]
(34)

where a(1)
i ’s are obtained from equation (20b).

From equation (34) one can see that the odd order non-linear normal modes comprise
only odd order linear normal modes and even order non-linear normal modes are given
by a combination of only even order linear normal modes. Hence, the odd and even order
non-linear normal modes are orthogonal to each other.

The non-linear normal modes for the clamped–clamped beam and the corresponding
frequencies, taking only the first three linear normal modes into consideration, are
obtained, up to the first order, as

c1 =81 +0·006675oa283, v2
1 = (vl

1)2[1+0·2351oa2] (35a)

c2 =82, v2
2 = (vl

2)2[1+0·41672oa2] (35b)

c3 =83 −0·05017oa281, v2
3 = (vl

3)2[1+0·50226oa2]. (35c)

Comparing equations (35a–c) with equations (27a–c), we can conclude that the effect of
the longitudinal inertia on the non-linear normal modes and frequencies of transverse
vibration is negligible.

2.4. -   -  (  )
The equation of motion of planar, transverse vibration of a harmonically forced slender

beam, neglecting the longitudinal inertia, is given by

rA
12w*
1t2 +EI

14w*
1j4 −EA$1

2l g
1

0 01w*
1j 1

2

dj% 12w*
1j2 = p*(x) cos Ut. (36)
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Using the non-dimensional parameters used so far together with

p=
p*l

EAg4 and U=
1
l 0Er1

1/2

gV,

equation (36) becomes

12w
1t2 +

14w
1x4 − o$g

1

0 01w
1x1

2

dx% 12w
1x2 = p cos Vt. (37)

In the absence of any secondary and internal resonance, the response can be written as

w(x, t)= s
i

ai ci (x) cos Vt (38)

where ci is the ith non-linear normal mode. One should not assume that the non-linear
normal modes are orthogonal to each other. When the forcing frequency is close to a linear
natural frequency i.e., vl

n, then the participation of the corresponding non-linear normal
mode is largest whereas the other modes participate only weakly. Mathematically this can
be written in the following form:

when V=vl
n + oV1, ai = obi , for i$ n. (39)

Substituting equations (38) and (39) into equation (37) and neglecting terms o(o2), one
obtains

−an V2cn cos Vt+ an
d4cn

dx4 cos Vt− oa3
n$g

1

0 0dcn

dx1
2

dx% d2cn

dx2 cos3 Vt

+ o s
i$ n $−bi V

2ci cos Vt+ bi
d4ci

dx4 cos Vt%= p cos Vt. (40)

Applying the harmonic balance technique to equation (40) and substituting equation
(28), one obtains

an cn (v2
n −V2)+ o s

i$ n $−bi V
2ci + bi

d4ci

dx4%= p. (41)

From equation (30) one notes that

g
1

0

cn ci dx= o(o), i$ n. (42)

Hence, multiplying equation (41) by cn and integrating over x, while neglecting terms o(o2),
one obtains

an =
f1
0 pcn dx

(v2
n −V2) f1

0 c2
n dx

. (43a)

Use of equation (31) in equation (43a) yields a cubic equation for the determination of
an .
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Since the non-linear frequency is close to the linear natural frequency and the nth order
linear mode of the beam is resonantly excited, we use v2

n −V2 = o(o). Now multiplying
equation (41) by cm , (m$ n), and integrating over x, one gets the following result by using
equations (42) and (39) while neglecting terms of o(o2):

am =
f1
0 p8m dx

((vl
m)2 −V2) f1

0 82
m dx

, (m$ n). (43b)

From equation (43b) it is observed that am’s (m$ n) are nothing but the participation
of the mth linear mode from the linear theory. Substituting equations (42a) and (43b) into
equation (38), one finally obtains the near resonance response.

Now a special situation when some non-linear normal modes are orthogonal to each
other is discussed. This happens, for example, for all the non-linear modes of a
simply-supported beam (see section 2.2.1) and the non-linear modes of even and odd order
for a clamped–clamped beam. In such cases, when two orthogonal non-linear normal
modes, say of order n and m are excited, the response can be written as

w(x, t)= an cn cos Vt+ am cm cos Vt+ o s
i$ n,m

bi ci cos Vt (44)

with

g
1

0

cn cm dx=0, g
1

0

cn ci dx= o(o), g
1

0

cm ci dx= o(o), when i$ n, m. (45)

Substituting equation (44) into equation (37) and by balancing of harmonics, one
obtains

an cn (v2
n −V2)+ am cm (v2

m −V2)− oan a2
m$g

1

0 0dcm

dx 1
2

dx% d2cn

dx2

− oam a2
n$g

1

0 0dcn

dx1
2

dx% d2cm

dx2 + o s
i$ n,m $−bi V

2ci + bi
d4ci

dx4%= p. (46)

Multiplying equation (46) by cn and cm separately and integrating over x, the following
equations are obtained by retaining terms up to o(o):

an (v2
n −V2)+ oan a2

m

$f1
0 0dcn

dx1
2

dx%$f1
0 0dcm

dx 1
2

dx%
f1
0 c2

n dx
=

f1
0 pcn dx
f1
0 c2

n dx
(47a)

am (v2
m −V2)+ oam a2

n

$f1
0 0dcm

dx 1
2

dx%$f1
0 0dcn

dx1
2

dx%
f1
0 c2

m dx
=

f1
0 pcm dx
f1
0 c2

m dx
. (47b)

Now equations (47a) and (47b) can be solved simultaneously to obtain an and am . It may
be noted from equation (43b) that even the linear theory can be used to calculate ai’s,
(i$m, n).
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2.4.1. Numerical results and discussions
In reference [7] the non-linear response of a harmonically excited, clamped–clamped

beam was obtained using the linear modes. The response was assumed to be of the
following form:

w(x, t)= s
3

i=1

A*i 8i (x) cos Vt

and A*i ’s were obtained by solving three simultaneous non-linear algebraic equations
resulting from the usual Galerkin’s technique.

From the analysis presented in section 2.4 one can see the efficacy of using non-linear
normal modes for calculating the response of a non-linear system. While the harmonic
balance method presented in reference [7] requires solving three simultaneous non-linear
algebraic equations, the present method reduces the computation to merely solving one
cubic equation. Furthermore, in the ordinary harmonic balance method, the number of
equations increases proportionately with the number of linear modes considered. But in
the method presented in this work, all the modal participation can be obtained from a
single equation.

To illustrate further that both methods give the same results, we show below the results
of a clamped–clamped beam, harmonically excited by a point load. The beam parameters
are taken to be the same as those in reference [7]. To compare the results with those
reported in the same reference, we collect the coefficients of the first three linear normal
modes (denoted by, say, A*i , with i=1, 2 and 3) from equations (38), (43a) and (43b).
When the nth linear mode is excited, the participation of different linear modes are as
follows:

A*n = an , A*m = am + oD(1)
m , (m$ n).

For the dimensions of the beam treated in reference [7], the non-dimensional para-
meters are obtained as g2 =2·12×10−6 and p=55624·7775. When the load is
symmetrical about the mid-point of the beam and cn is antisymmetric, the response
amplitude is very small (since an =0) and can be calculated from the linear theory. The
situation is exactly similar when the load is antisymmetric and cn is symmetric. For the
simply-supported and clamped–clamped beams, it was seen that cn is symmetric or
antisymmetric according to whether n is odd or even, respectively. Then from the above
argument the non-linear analysis is required only if: n is odd and the load is symmetric
about the mid-point i.e., x=1/2; n is even and the load is antisymmetric about x=1/2;
or the load is asymmetric.

Figures 1(a) and (b) show the participation of the first and third linear modes when
the first linear mode is resonantly excited by a load at x=1/2. The factor (g2) in
the ordinate is used to compare the results of reference [7] and arises because of
the difference in the non-dimensionalisation procedure. The results of the present
analysis are in very good agreement with those of reference [7]. Both the results
show marked deviation from the linear theory. It is also to be noted that the experimental
data obtained in reference [7] support the theoretical results. Further, like all cases of
cubic non-linearity, when multiple solutions for the periodic response appear, the
intermediate one is unstable.
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When the first mode is resonantly excited by a point harmonic loading applied at
x=1/4, both the first and second non-linear normal modes, which are orthogonal to each
other, get excited. Their response amplitudes are obtained by solving equations (48a) and
(48b) and are shown in Figures 2(a) and (b). The results again show excellent agreement
with those reported in reference [7].

When the third linear mode is excited by a point loading at x=1/2, the first mode is
also excited owing to the modal coupling. The modal participation of the first and third
linear modes are shown in Figures 3(a) and (b), respectively. The results also show
reasonable agreement with those of reference [7].

Figure 1. (a) Participation of the first mode in the response. (b) Participation of the third mode in the response.
q, reference [7]; w, present method; ——, in phase; – – –, out of phase.



6

2

0.4 1.6

1

2  
x 

10
3 )

 A
1

0.8 1.2

4

l/Ω ω

γ(
*

(a)

16

4

0.8 1.61.20.4

8

12

1

2  
x 

10
5 )

 A
2

l/Ω ω

γ(
*

(b)

.   .30

Figure 2. (a) Participation of the first mode in the response. (b) Participation of the second mode in the
response. q, reference [7]; w, present method; ——, in phase; – – –, out of phase.

2.5. -   -  (  )
The non-dimensional equations of motion for coupled longitudinal and transverse

vibration of a harmonically excited, slender beam are given by

12u
1t2 −

1
2o

12u
1x2 =2o

1w
1x

12w
1x2 , (48a)

12w
1t2 +

14w
1x4 =

1

1x $ 1
2o

1u
1x

1w
1x

+ o01w
1x1

3

%+ p cos Vt. (48b)
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When V=vl
n + oV1, the response, as in section 2.4, is written in the form:

w(x, t)= an cn cos Vt+ o s
i$ n

bi ci cos Vt. (49)

Equation (49) is substituted into equation (48a) and solved for u(x, t), which is then
replaced in equation (48b). Thereafter balancing the harmonics and omitting terms of

Figure 3. (a) Participation of the first mode in the response. (b) Participation of the third mode in the response.
q, reference [7]; w, present method; ——, in phase; – – –, out of phase.
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Figure 4. (a) Participation of the first mode in the response. (b) Participation of the third mode in the response.
——, in phase response neglecting longitudinal inertia; – – –, out of phase response neglecting longitudinal
inertia; w, including longitudinal inertia.

order o(o2) and higher, the following equation resulted:

− an V2cn + an
d4cn

dx4 −
d
dx

G
G

G

K

k
o

4
a3

n0dcn

dx1
3

+
o

2
a3

n s
a

i=1

Cl
i0dGi

dx10dcn

dx1
n2

i

G
G

G

L

l

− 1
2 oa3

n$g
1

0 0dcn

dx1
2

% d2cn

dx2 + o s
i$ n $−V2bi ci + bi

d4cn

dx4 %= p. (50)
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Substituting equation (15) into equation (50) one obtains

an cn (v2
n −V2)+ o s

i$ n $−bi V
2ci + bi

d4ci

dx4%= p. (51)

Using the result given by equation (42) one finally obtains from equation (51)

an =
f1
0 pcn dx

(v2
n −V2) f1

0 c2
n dx

. (52)

As noted in section 2.4, bi’s are obtained from linear analysis with i$ n.

Figure 5. (a) Participation of the first mode in the response. (b) Participation of the third mode in the response.
——, in phase response neglecting longitudinal inertia; – – –, out of phase response neglecting longitudinal
inertia; w, including longitudinal inertia.
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2.5.1. Numerical results and discussions
Here we recalculate the results reported in section 2.4.1, the only difference being that

here we take the longitudinal inertia into consideration. The results are then compared with
those of section 2.4.1.

Figures 4(a) and (b) show the participation of the first and the third linear modes when
the first linear mode is excited by a point load at x=1/2. The effect of longitudinal inertia
is seen to be extremely small.

Figures 5(a) and (b) show the participation of the first and the third linear mode when
the third linear mode is excited by the same loading. Here also the effect of longitudinal
inertia is negligibly small.

3. CONCLUSIONS

A very simple method for obtaining the non-linear normal modes of a uniform beam
is presented. The non-linear normal modes are derived for simply-supported and
clamped–clamped end conditions by both retaining and neglecting the longitudinal inertia.
It is shown that the longitudinal inertia has negligible effect on the non-linear normal
modes and associated frequencies in the first approximation. For a simply-supported
beam, when the longitudinal inertia is neglected, the non-linear modes are the same as the
linear ones. However, these differ only in the second approximation if the longitudinal
inertia is taken into consideration.

For a clamped–clamped beam, it is shown that the even order non-linear modes
comprise a combination of even order linear normal modes. Similarly, the odd order
non-linear normal modes consist of a combination of odd order linear normal modes. This
implies orthogonality between the even and odd order non-linear normal modes.

The non-linear normal modes can be used profitably to determine the near-resonance
response of the beam. The results show excellent agreement with those obtained by
Galerkin’s technique with the linear normal modes. The method using the linear normal
modes requires simultaneous solution of non-linear algebraic equations. The number of
equations to be handled equals the number of the linear normal modes considered. The
method presented in this work reduces the computation to merely solving one cubic
equation.
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APPENDIX A: LIST OF SYMBOLS

w* transverse displacement of the beam
u* longitudinal displacement of the beam
r density of the beam material
E Young’s modulus of the beam material
A area of cross-section of the beam
l length of the beam
I second moment of area of cross-section about the neutral axis
r radius of gyration of the beam cross-section= zI/A
g slenderness ratio, r/l�1
o= g2/2
j longitudinal distance of a point on the beam from left support
t time
x non-dimensional distance, j/l
t non-dimensional time, (1/l)(E/r)1/2gt
w non-dimensional transverse displacement
u non-dimensional longitudinal displacement
8n nth linear normal mode
vl

n linear natural frequency of the nth linear mode
cn nth non-linear normal mode
vn frequency corresponding to the nth non-linear normal mode
p* transverse force per unit length
p non-dimensional transverse force
U frequency of excitation
V non-dimensional frequency of excitation
ai participation of the ith non-linear normal mode
A*i participation of the ith linear normal mode
Gi =sin ipx, i=1, 2, 3, . . .
ni = ip, i=1, 2, 3, . . .

APPENDIX B: NON-LINEAR NORMAL MODES FOR SIMPLY-SUPPORTED SLENDER
BEAM WITH LONGITUDINAL INERTIA INCLUDING SECOND ORDER TERMS

The non-linear normal modes are obtained by solving equation (15), which is reproduced
below:

− av2
ncn + a

d4cn

dx4 =
d
dx

G
G

G

K

k
o

4
a30dcn

dx1
3

+
o

2
a3 s

a

i=1

Ci 0dGi

dx10dcn

dx1
(n2

i −8ov2
n)

G
G

G

L

l

+ 1
2 oa3$g

1

0 0dcn

dx1
2

% d2cn

dx2 .

(B1)

One can expand v2
n and cn as in equations (13) and (14) and Ci as

Ci =C(0)
i + oC(1)

i + o2C(2)
i (B2)

where

C(0)
i =

f1
0
d8n

dx
d28n

dx2 Gi dx

f1
0 G2

i dx
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C(1)
i =

f1
0 $dd(1)

n

dx
d28n

dx2 +
d8n

dx
d2d(1)

n

dx2 %Gi dx

f1
0 G2

i dx

C(2)
i =

f1
0 $dd(2)

n

dx
d28n

dx2 +
d8n

dx
d2d(2)

n

dx2 +
dd(1)

n

dx
d2d(1)

n

dx2 %Gi dx

f1
0 G2

i dx
.

Now, substituting v2
n , cn and Ci into equation (B1) and equating the coefficients of o0

and o1 from both sides one obtains equations (16a) and (16b) respectively. Similarly
equating the coefficients of o2 from both sides one gets

−(vl
n)2d(2)

n +
d4d(2)

n

dx4 = b(2)
n 8n + b(1)

n d(1)
n + 1

2 a2$g
1

0 0d8n

dx1
2

dx% d2d(1)
n

dx2

+ a2$g
1

0 0dd(1)
n

dx
d8n

dx 1 dx% d28n

dx2 +
d
dx $3

4 a20d8n

dx1
2 dd(1)

n

dx

+ 1
2 a2 s

a

i=1 08C(0)
1 (vl

n)2

n4
i

dGi

dx
d8n

dx
+

C(1)
i

n2
i

dGi

dx
d8n

dx
+

C(0)
i

n2
i

dd(1)
n

dx
dGi

dx1%.

(B3)

For a simply-supported beam, with fn =sin npx and Gn =sin npx one finally obtains

cn =sin npx= o2 3
160 a2(np)2 sin 3npx (B4)

v2
n =(np)4 [1= 3

8 oa2−1
2 o2a2(np)2]. (B5)

Similar solutions can also be obtained for a simple-supported beam after neglecting
the longitudinal inertia. In this case, solving equation (28) up to the second order terms
one gets

cn =sin npx+ o(o3), v2
n =(np)4 [1+ 3

8 oa2 + o(o3)]. (B6, B7)


